
A Memory Resource Prediction Method Based on

Machine Learning

Gaoxiang Zhang

Institute of Network Computing and Information Systems

School of Electronics Engineering and Computer Science, Peking University

Beijing, China

1100012899@pku.edu.cn

Abstract—The para-virtualization architecture of Xen results

in the incapability of acquiring memory demand. The method

equivalent to software simulation is widely used but gains high

overhead. In this paper, we propose a low cost method which uses

machine learning to build the memory resource prediction model

via getting performance counter. This method can integrate with

other optimizing approach and reduce the overhead.

Keywords—Virtualization environment; machine learning;

memory resource prediction; working set

I. INTRODUCTION

Virtualization enables multiple operating systems to run on
their own virtual machine (VM) separately and efficiently for
users. One of the challenges is effective management of shared
physical resources, which has a premise of the precise and low-
cost measurement of resources.

As the representation of para-virtualization, Xen modifies
the kernel of operating system and realizes a light software
layer namely virtual machine monitor (VMM). Owing to no
host OS participation in resource management, VMs are almost
directly upon hardware like real systems, leading to high
performance. However such fidelity causes the VMM is
unaware of resource demand of VMs and thus unable to
conduct management.

To be informed of the usage, the wide-spread method [1] is
to simulate the page scheduling process in real time. However,
this method results in high overhead. Our work is motivated by
the algorithms in machine learning. We hope to use machine
learning to predict memory resource precisely and efficiently.

II. RELATED WORK

A. Working Set

The concept of working set [2] is the set of memory pages
referenced by a process during a time interval. Working set size
(WSS) is the amount of memory that a process (or a VM)
needs without paging, so it is a good representative of memory
resource usage.

B. Miss Ratio Curve Based Working Set Size Estimation

The miss ratio curve (MRC) based WSS estimation is a
widely used technique [5]. MRC reflect the correlation of
memory size and page miss ratio. With a MRC, we can
redefine WSS as the memory size with a predefined tolerable
page miss rate. By tracking the physical memory address of

accesses, we can build the LRU histogram and calculate MRC,
then getting the WSS with a given threshold.

As we discussed before, it is inevitable to overcome the
transparent accesses through VMM. The first method is
hardware approach that use memory bus to get the address. [3]
Though little overhead, it is unavailable on current processors.
The second is OS approach, the OS revokes access permission
for pages, which will cause a protection fault so that VMM is
able to get the address. Due to frequent page faults and the cost
of updating LRU, this method has high overhead, shown as (1):

 Interrupt Times* (T page fault disposal +T LRU update) 

To reduce the overhead, former research proposed AVL

tree based technique to decrease LRU update time, and ‘hot-

set’ to decrease interrupt times [4]. Our approach will not

only decrease the interrupt times, but is also orthogonal to

these techniques. By synthetizing optimizing means, we can

greatly reduce the overhead of memory resource tracking.

C. Hardware Counter Characters

Zhao et al. [5] found that the variation trend of WSS

matches some hardware performance counter and made use of

this trend. Motivated by this discovery, we not only use the

similarity, but also the value relationship. Thanks to low cost

of getting hardware counter and conducting prediction, our

target is to build the suitable model with available algorithm.

III. INPLEMENTATION

A. Feature and Algorithm Selection

Choosing appropriate features is critical to our approach.
The architecture today supports hundreds of performance
indexes, but it restrict the number of indexes gained at runtime,
attributing to limited registers. So when implemented, we must
find very features that can describe memory usage. After
sampling some indexes that are related to cache and TLB, we
find the trend of the access number of level 1 cache, the miss
number of level 2 and 3 cache, as well as the miss number of
TLB are more fitted to WSS, so in our implementation, we use
them as our training features.

After testing various regression algorithms, we decide to
choose Lasso Regression [6] as our trainer.

B. Limitations of Other Models

The basic idea is simply using system instructions such as
‘ps’ or ‘top’ to get the memory usage of process. Though the
overhead is low, the result is quite inaccurate.

It is also natural to intend to find a single model that is
trained on one program and tested on another. But actually, we
note and the experiment shows that different program have a
bunch of memory access pattern, so direct analysis cannot
work. This restriction also blocks the classification of program
behave. So it is unlikely to find a global model, which means it
is essential to use runtime data to assist.

The former technology [5] called “Intermittent Memory
Tracking” (IMT) which filters fluctuation and simply regards
WSS as flat when TLB miss value stay in a relatively stable
situation. This strategy works quite well in program with long
and flat phases, but cannot gain precise value of wavy phases.

C. Self Adaptive Model

To overcome the limitations posed by former models, we
refer to the idea of IMT so as to predict precisely and the result
is compliant with original data.

To prevent excessive tracking, we need to collect partial
data. One idea is to open tracking for a while and use this
single model to predict the rest. It is simple but also not proper
to inter-periodic prediction. Our idea is to intermittently open
tracking and dynamically change the model, then we use the
sub-model to predict the WSS in a sub region. Because of the
stable in-phase character, this idea is more suitable.

So tracking interval is the key parameter. The first strategy
sets a fixed interval. The second strategy uses dynamic interval.
With an initial interval, when meeting a tracking point, the
algorithm will test the gap between real data and predict data.
If the gap is too large, the algorithm will decrease the interval
in order to collect more neighbor data to correct the model. Or
the gap is small enough, which means the model is stable, so
the frequent tracking is not useful and the interval will increase.

After the prediction, we need to amend the data. Firstly, the
negative data should go to zero. Secondly, we judge a ‘noise’ if
its value is far larger or smaller than its neighbor, these noises
should be eliminated and go to the mean value of its neighbor.

It is obvious that neighbor data may affect more on
prediction, so we add the weight of closer data by simply
setting a limited FIFO auxiliary set with latest data. When a
training data arrives, it will be added to both training set and
this auxiliary set, with the old data in auxiliary dequeuing (if
needed). And the regression use both sets to train the model.

IV. EVALUATION

A. Evaluation Criteria

We define the tracking rate and error rate as our evaluation
criteria, showed in (2) and (3). Tracking rate reflects the
overhead, and error rate represents the correctness. We aim to
restrict the error rate to a low level, and try decreasing tracking
rate as much as possible.

 Tracking Rate = Tracking Point / Total Point 

Error Rate = (true value - predict value) / max (true - predict)

B. Experimental Evaluation

We use modified Xen 4.2 and Linux 3.10 as our experiment
environment. And our benchmark is SPEC CPU 2006, which
contains various programming language and memory access
pattern.

TABLE I. EVALUATION OF SELF ADAPTIVE MODEL

Tracking

Interval

Evaluation Criteria of SPEC CPU 2006

Average Tracking Rate Average Error Rate

Fixed T=2 50% 11.39%

Fixed T=5 20% 17.00%

Fixed T=10 10% 19.95%

Dynamic T 7.1% 9.60%

RSS N/A 34.2%

V. CONCLUSION

In this paper, we propose an approach using machine
learning to reduce the frequency of original tracking and
acquire relatively precise working set size value. It overcomes
the defects of existing methods with the assist of raw data and
Lasso algorithm. By testing on SPEC, we verify that our
method can synthetize existing optimizing techniques to gain
much better performance.

ACKNOWLEDGMENT

This work is supported by the Peking University Principal
Undergraduate Research Foundation (URTP2013PKU004).

My sincere thanks go to my advisor: Dr. Yingwei Luo, Dr.
Xiaolin Wang and Dr. Zhenlin Wang. And I would like to
thank members in GIS Lab.

REFERENCES

[1] Mattson RL, Gecsei J, Slutz D, Traiger IL. Evaluation techniques for
storage hierarchies. IBM System Journal. 1970;9(2):78–117.

[2] Denning PJ. The working set model for program behavior.
Communications of the ACM. May 1968; 11:323–333.

[3] Zhou P, Pandey V, Sundaresan J, Raghuraman A, Zhou Y, Kumar S.
Dynamic tracking of page miss ratio curve for memory management. In
Proceedings of the 11th International Conference on Architectural
Support for Programming Languages and Operating Systems. 2004:177–
188.

[4] Zhao W, Jin X,Wang Z, XiaolinW, Yingwei L. Efficient LRU-based
working set size tracking. Technical Report CS-TR-11-01, Houghton,
MI, USA, 2011.

[5] Zhao W, Jin X, Wang Z, Wang X, Luo Y, Li X. Low cost working set
size tracking. In Proceedings of the 2011 annual conference on USENIX
Annual Technical Conference. 2011.

[6] Tibshirani R. Regression shrinkage and selection via the lasso[J].
Journal of the Royal Statistical Society. Series B (Methodological), 1996:
267-2

