
Gaoxiang Zhang

School of Electronics Engineering and Computer Science, Peking University
1100012899@pku.edu.cn

Introduction

We propose an approach using machine learning to reduce the frequency of original tracking and acquire relatively precise
working set size value. It overcomes the defects of existing methods with the assist of raw data and Lasso algorithm. By
testing on SPEC, we verify that our method can synthetize existing optimizing techniques to gain much better performance.

Abstract

The para-virtualization architecture of Xen results in the incapability of acquiring memory demand. The method
equivalent to software simulation is widly used but gains high overhead. In this paper, we propose a low cost method which
uses machine learning to build the memory resource prediction model via getting performance counter. This method can
integrate with other optimizing approach and reduce the overhead.

Virtualization enables multiple operating systems to run on their own
virtual machine (VM) separately and efficiently for users. One of the
challenges is effective management of shared physical resources, which has
a premise of the precise and low-cost measurement of resources.
As a representation of para-virtualization, Xen modifies the kernel of
operating system and realizes a light software layer namely virtual machine
monitor (VMM). Owing to no host OS participation in resource
management, VMs are almost directly upon hardware like real systems,
leading to high performance. However such fidelity causes the VMM is
unaware of resource demand of VMs and thus unable to conduct
management.
To be informed of the usage, the wide-spread method [1] is to simulate
the page scheduling process in real time. However, this method results in
high overhead. Our work is motivated by the algorithms in machine
learning. We hope to use machine learning to predict memory resource
precisely and efficiently.

Proposed

Feature and Algorithm Selection

 Low cost performance monitoring counter (PMC) that the number is
limited and is most related to the variation trend of working set size
(WSS):

L1 cache accesses, L2 cache misses, L3 cache misses, TLB misses
 Regression model is trained by Lasso Algorithm.

Limitations of existing methods

 System rss stat: low accuracy
 Pin: quite high overhead
 Original MRC based WSS tracking [1]: high overhead
 ‘Intermittent Memory Tracking’ [2]: only good to long and flat phases

Main Idea

To prevent excessive tracking, our idea is to intermittently open tracking
and dynamically change the model, then we use the sub-model to predict
the WSS in a sub region. Because of the stable in-phase character, this idea
is more suitable. Tracking interval is the key parameter. The first strategy
sets a fixed interval. The second strategy uses dynamic interval. With an
initial interval, when meeting a tracking point, the algorithm will test the
gap between real data and predict data. If the gap is too large, the
algorithm will decrease the interval in order to collect more neighbor data
to correct the model. Or the gap is small enough, which means the model is
stable, so the frequent tracking is not useful and the interval will increase.

 Self Adaptive Algorithm

SELF_ADAPTIVE_ALGORITHM(trainx,trainy):
1 new testx[], testy[], result[], model
2 set warm_up, interval, threshold_max, threshold_min, delta
3 initialization
4 for i <- 0 to warm_up
5 do testy[i] = trainy[i]
6 testx[i] = trainx[i]
7 result[i] = trainy[i]
8 model = Lasso(testx,testy)
9 for i <- warm_up to length(trainx)
10 do result[i]=model.predict(trainx[i])
11 if i%interval = 0
12 then do if error(trainy[i],result[i])>threshold_max
13 then do interval = interval - delta
14 else if error(trainy[i],result[i])<threshold_min
15 then do interval = interval + delta
16 model = Lasso(testx,testy)

Acknowledgement

This work is supported by the Peking University Principal Undergraduate
Research Foundation (URTP2013PKU004).
My sincere thanks go to my advisors: Dr. Yingwei Luo, Dr. Xiaolin Wang
and Dr. Zhenlin Wang.
Thank all members in GIS lab for their help.

Reference

Evaluation

[1] Mattson RL, Gecsei J, Slutz D, Traiger IL. Evaluation techniques for
storage hierarchies. IBM System Journal. 1970;9(2):78–117.
[2] Zhao W, Jin X, Wang Z, Wang X, Luo Y, Li X. Low cost working set size
tracking. In Proceedings of the 2011 annual conference on USENIX Annual
Technical Conference. 2011.

Benchname Error Rate Tracking Rate

400.perlbench 31.4% 8.1%

401.bzip2 43.2% 18.8%

403.gcc 30.0% 7.4%

410.bwaves 27.0% 11.1%

416.gamess 10.9% 5.4%

429.mcf 18.5% 6.3%

433.milc 6.0% 4.6%

434.zeusmp 16.3% 5.4%

435.gromacs 1.1% 6.1%

436.cactusADM 5.5% 4.4%

437.leslie3d 0.6% 4.9%

444.namd 29.3% 15.6%

445.gobmk 24.9% 9.1%

447.dealⅡ 49.5% 21.1%

450.soplex 9.0% 6.0%

453.povray 5.4% 9.2%

454.calculix 39.4% 22.2%

456.hmmer 20.2% 11.2%

458.sjeng 3.3% 4.6%

459.GemsFDTD 1.0% 4.1%

462.libquantum 1.5% 5.0%

464.h264ref 27.6% 10.2%

465.tonto 42.4% 21.4%

470.lbm 0.4% 6.2%

471.omnetpp 5.8% 4.5%

473.astar 18.9% 5.5%

481.wrf 13.8% 5.2%

482.sphinx3 5.1% 6.0%

483.xalancbmk 15.5% 6.4%

Mean of SPEC 9.60% 7.61%

Mean of rss 34.20% N/A

Stage Program 12% 5.20%

450 with stable phases

447 with wavy wss

465 with periodic wavy phases

482 with slope phaseStage Program

Optimization
Firstly, the negative data should go to zero. Secondly, we judge a ‘noise’ if
its value is far larger or smaller than its neighbor, these noises should be
eliminated and go to the mean value of its neighbor. Thirdly, we directly
regard data on tracking as the prediction result but not regression value.
It is obvious that neighbor data may affect more on prediction, so we add
the weight of closer data by simply setting a limited FIFO auxiliary set with
latest data. When a training data arrives, it will be added to both training
set and this auxiliary set, with the old data in auxiliary dequeuing (if
needed). And the regression use both sets to train the model.

Conclusion


